Differential Equations

Homework 6

Due Mar. 13, 2024, 9:59 am

Note:

- Please show all of your work (writing a list of answers is not sufficient).
- Please indicate the people you worked with.

- Please staple your HW.

- Several random problems will be graded (1 point each).

1. Solve the initial value problem using Euler's method with $h=0.1$

$$
y^{\prime}=3+x-y, \quad y(0)=1, \quad 0 \leq x \leq 0.5
$$

2. Solve the initial value problem using Euler's method with $h=0.1$

$$
y^{\prime}=2 y-1, \quad y(0)=1, \quad 0 \leq x \leq 0.5
$$

3. Verify that y_{1} and y_{2} are solutions of the differential equation. Then find a particular solution of the form $y=c_{1} y_{1}+c_{2} y_{2}$ that satisfies the given initial conditions.

$$
y^{\prime \prime}-y=0, \quad y_{1}=e^{x}, \quad y_{2}=e^{-x}, \quad y(0)=0, \quad y^{\prime}(0)=5
$$

4. Verify that y_{1} and y_{2} are solutions of the differential equation. Then find a particular solution of the form $y=c_{1} y_{1}+c_{2} y_{2}$ that satisfies the given initial conditions.

$$
y^{\prime \prime}+6 y^{\prime}+13 y=0, \quad y_{1}=e^{-3 x} \cos 2 x, \quad y_{2}=e^{-3 x} \sin 2 x, \quad y(0)=2, \quad y^{\prime}(0)=0
$$

5. Verify that y_{1} and y_{2} are solutions of the differential equation. Then find a particular solution of the form $y=c_{1} y_{1}+c_{2} y_{2}$ that satisfies the given initial conditions.

$$
x^{2} y^{\prime \prime}-x y^{\prime}+y=0, \quad y_{1}=x, \quad y_{2}=x \ln x, \quad y(1)=7, \quad y^{\prime}(1)=2
$$

